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ABSTRACT: Few studies have assessed combined satellite, lightning, and radar databases to diagnose severe storm po-
tential. The research goal here is to evaluate next-generation, 60-s update frequency geostationary satellite and lightning
information with ground-based radar to isolate which variables, when used in concert, provide skillful discriminatory in-
formation for identifying severe (hail = 2.5 cm in diameter, winds = 25ms !, and tornadoes) versus nonsevere storms. The
focus of this study is predicting severe thunderstorm and tornado warnings. A total of 2004 storms in 2014-15 were ob-
jectively tracked with 49 potential predictor fields related to May, daytime Great Plains convective storms. All storms
occurred when 1-min Geostationary Operational Environmental Satellite (GOES)-14 “‘super rapid scan’ data were avail-
able. The study used three importance methods to assess predictor importance related to severe warnings and used random
forests to provide a model and skill evaluation measuring the ability to predict severe storms. Three predictor importance
methods show that GOES mesoscale atmospheric-motion-vector-derived cloud-top divergence and above-anvil cirrus
plume presence provide the most satellite-based discriminatory power for diagnosing severe warnings. Other important
fields include Earth Networks Total Lightning flash density, GOES estimated cloud-top vorticity, and overshooting-top
presence. Severe warning predictions are significantly improved at the 95% confidence level when a few important satellite
and lightning fields are combined with radar fields, versus when only radar data are used in the random-forest model. This
study provides a basis for including satellite and lightning fields within machine-learning models to help forecast severe
weather.

KEYWORDS: Convective storms; Convective-scale processes; Radars/Radar observations; Satellite observations;
Nowcasting; Probability forecasts/models/distribution

1. Introduction and background (e.g., Kumjian and Ryzhkov 2008; Schultz et al. 2015; Apke
et al. 2018; Bedka et al. 2018). Forecasters have recently
favored multi-data-source products, which presently oper-
ate using combined predictors that contain the most value
for objectively identifying pending events, for example se-
vere (or soon-to-be-severe) deep convection (Cintineo et al.
2014, 2020).

Present state-of-the-art methods that integrate a combina-
tion of weather datasets rely on raw and derived geostationary
satellite parameters, gridded radar observations and derived
products [e.g., the Multi-Radar Multi-Sensor (MRMS) product
suite; Zhang et al. 2016], and NWP model fields. With respect
to severe weather nowcasting (0-1h forecasting), Probability
of Severe Convection (ProbSevere; Cintineo et al. 2014, 2018,
2020), the MeteoSwiss Context and Scale Oriented Thunderstorm
Satellite Predictors Development (COALITION; Nisi et al.
2014), and the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) Nowcasting Satellite
Application Facilities (NWCSAF) Rapidly Developing
Thunderstorm (RDT; Autones and Moisselin 2010; Gijben and
de Coning 2017) systems are statistical models that perform
such integration. Other models that have been developed to
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uah.edu machine-learning methods for automated convective storm

Statistical models have proven to be valuable for making
short-term forecasts of convective storms (Dixon and Wiener
1993; Wilson and Mueller 1993; Wilson et al. 1998; Mueller
et al. 2003; Lin et al. 2012). With the advent of high-resolution
satellite datasets (up to 0.5-km spacing per pixel, over 10
channels, available every ~1 min), National Weather Service
(NWS) and other forecasters are challenged to integrate all
information in a timely manner. Other high-resolution datasets
include operational numerical weather prediction (NWP)
models (~3-6-km grid spacing), ground- and space-based
lightning networks (e.g., Krehbiel et al. 2000; Koshak et al.
2004; Goodman et al. 2013), and advanced Doppler-radar
products (Zhang et al. 2011; Smith et al. 2016). The data-
integration task frequently proves very challenging in an op-
erational environment, often causing forecasters to rely on
outdated products or methods without taking more current
datasets into account, despite results from the latest research
that frequently show considerable diagnostic value within in-
dividual products derived from the abovementioned datasets
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initiation nowcasting (Mecikalski et al. 2015), mesoscale con-
vective complex identification (Ahijevych et al. 2016), auto-
mated overshooting top (OT) identification (Bedka and
Khlopenkov 2016), hail forecasting (Gagne et al. 2017),
ensemble forecasts (Gagne et al. 2014), and damaging straight-
line wind diagnosis (Lagerquist et al. 2017). Machine-learning
approaches have recently become popular for use with satellite
remote sensing datasets (e.g., Kiihnlein et al. 2014; Meyer et al.
2016; Beusch et al. 2018).

A guiding research question becomes: How useful are new
research-based fields derived from 1-min resolution data for
discriminating between severe and nonsevere convective
storms, especially when used in a machine-learning nowcast
model with many predictor fields? The specific science goals we
address are the following: 1) Given use of only 5-min storm-
centered radar products in a machine-learning approach, what
is the skill for diagnosing severe weather? 2) Can the addition
of 1-min resolution GOES satellite and lightning fields increase
diagnostic or predictive skill when used in combination with
radar data in a machine-learning model? 3) Which GOES-
derived and lightning fields are most beneficial for severe
weather diagnosis and nowcasting? The hypothesis guiding this
study is that if 1-min-resolution satellite or lightning datasets
provide useful information toward diagnosing and predicting
severe weather, then the addition of said fields with radar ob-
servations will make for a more skillful severe weather diag-
nostic and prediction system.

To address the above question and goals, storm cells are
tracked throughout their lifetime using gridded volumetric
dual-polarization NEXRAD datasets (GridRad; Homeyer
et al. 2017). GridRad analyses of storm microphysics and in-
ferences of updraft and rotation intensity, GOES-14 fields,
Earth Networks Total Lightning Network (ENTLN; Rudlosky
2015) fields, and severe weather reports and human issued
NWS warnings (severe thunderstorm or tornado) are linked to
the storm tracks. Several methods are subsequently used to
determine predictor importance beginning with 49 predictors.
The most useful predictors are then used within a random-
forest predictive model, and the accuracy of the model to
identify storms with severe thunderstorm or tornado warnings,
with and without satellite and lightning fields, is assessed. A
first evaluation considered performing this study using severe
weather reports, which is described further below.

It is well known that ground-based radar on its own
provides a valuable dataset for diagnosing and predicting se-
vere weather potential from convective storms (see Fabry
2015; chapter 7). However, prior to the present study, it is
unclear how several new lightning- and satellite-derived
products produced from 1-min resolution data can improve a
machine-learning model’s ability to automatically detect and
predict severe storm occurrence. Until GOES-14, geosta-
tionary satellites had not routinely observed storms at time
frequencies high enough (<5 min) to capture the often-rapid
changes in cloud characteristics indicative of impending severe
weather, limiting our ability to derive such new satellite fields.
Hence, the novel aspects of the present study are the applica-
tion of machine learning to identify severe convective storms
using new nonoperational state-of-the-art radar, lightning and
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geostationary satellite-based fields together, as derived from
1-min resolution datasets, and determining which of these
fields are most important to this forecast process. The desired
outcome is to provide forecasters and developers of forecast
systems increased understanding of the utility of new GOES-
R-era experimental datasets designed for severe weather
prediction.

2. Data

The following sections overview each dataset, and specifi-
cally how they were formed and processed into the main cell-
track database as used for random-forest model development.
Figure 1 shows a few of the datasets for a supercell storm near
the Denver (Colorado) International Airport. When used
individually, a forecaster (and similarly, a machine) can isolate
the severe convection using strong divergence near a satellite-
observed OT, which was associated with high lightning flash
rates and strong reflectivity.

a. GridRad data and storm cell tracks

The main dataset used, as described in Sandmel et al. (2019)
and Murillo and Homeyer (2019), was a database of 49 radar,
satellite, and lightning fields every minute along the cell tracks
of convective storms across seven case study days listed in
Table 1. The terms “‘storm” and “‘cell” are used interchange-
ably throughout this paper. This cell-track database consists of
1) GOES-14 1-min “super rapid scan” (SRS) observations and
derived fields that were collected periodically from 2012 to
2015, yet cases from 2014 to 2015 were used for this study given
the availability of additional satellite-based fields; 2) four-
dimensional volumes of GridRad variables at 5-min resolution
on each day processed; and 3) ENTLN lightning observations
at 1-min resolution. The specific case study days were selected
when severe weather occurred within the GOES-14 SRS
1000km X 1000km Flex Mesoscale sectors, analogous to
Mesoscale Domain Sectors collected by GOES-16 and -17
from the Advanced Baseline Imager (ABI).

NEXRAD Level II (i.e., volume) data used to derive the
cell-track database were gathered from the National Oceanic
and Atmospheric Administration (NOAA) National Centers
for Environmental Information (NCEI). All NEXRAD
observations were obtained typically at 14 elevations per
volume, at a range resolution of 250 m, and an azimuthal
resolution of 0.5°, for the lowest three—four elevations, and
1.0° otherwise. The radar data were processed using the
four-dimensional space-time merging methods described in
Homeyer and Bowman (2017), which provide volumes of
GridRad radar variables at 2-km horizontal, 1-km vertical,
and 5-min temporal resolutions over the extent of the
GOES-14 SRS domains for all case study days. A total of
2004 cells were tracked for all study days. It is well recog-
nized that the main database used is limited to May, daytime
U.S. Great Plains severe weather events. Hence, the results
to follow in terms of diagnosing and predicting severe
storms may not generalize well to broader regions of the
United States or to nighttime and more “pulse like” summer-
time severe weather events.
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FI1G. 1. Four of the main GridRad, ENTLN, and GOES-14 datasets used in this study, specifically for 2138 UTC
21 May 2014 over central Colorado (this is just after a supercell overtook the Denver radar KFTG): (a) satellite-
derived cloud-top divergence (CTD;s 1) with overshooting tops (OTs; green filled pixels), (b) ENTLN flash extent
density, (c) GridRad horizontal reflectivity Z,, at 3 km, and (d) GridRad 20-dBZ echo tops (ETs).

Cell tracking was performed using an automated echo-top
algorithm introduced by Homeyer et al. (2017) and Bedka et al.
(2018). Gaussian-smoothed local maxima in echo-top alti-
tudes, where the horizontal reflectivity Z is at least 40 dBZ,
are identified in each 5-min radar observation, and individual
echo-top maxima are temporally pieced together if they lie
within 12.5km of each other over a period of 5 min. The 40-
dBZ echo-top maxima are subsequently filtered by the con-
vective echo classification output, as provided by the Storm
Labeling in Three Dimensions (SL3D) algorithm (Starzec
et al. 2017). The SL3D algorithm uses GridRad data to ob-
jectively classify radar echoes based on storm height, depth,
and intensity for storm updraft classification. Tracked echo-top
maxima are required to exceed 4km above ground level
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altitude and occur for at least 15 min of radar analyses; hence
storms with lifetimes < 15min are not analyzed. Radar Zy
imagery of the objectively tracked storms were quality-
controlled (as in Sandmel et al. 2019), and then were used to
extract maximum or minimum field values from each dataset
within a 10-km radius of the storm location at 1-min intervals.
Missing and unavailable radar data at resolutions > 5 min were
interpolated linearly in time to the storm track locations at
1-min resolution. Once accomplished, the final cell-track da-
tabase contained all variables listed in Table 2 every minute
of a given storm’s lifetime for all 2004 cells. Figure 2 shows
tracks for the 2004 storms that were processed on the seven
days examined (see Table 1). Severe Weather Data Inventory
(SWDI; National Centers for Environmental Information 2017)
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TABLE 1. List of case days used to form the cell-track database
used in this study. The number of storm cells tracked, and the
number of minutes all storm cells on a given day were tracked at 1-
min time intervals, are also listed. Totals are listed in the bot-
tom row.

Day Cells per day 1-min cell-track times
10 May 2014 112 6977
11 May 2014 330 14980
21 May 2014 54 2484
19 May 2015 329 18004
24 May 2015 123 6208
25 May 2015 669 23114
27 May 2015 387 20463
Total 2004 92216

severe weather reports from the NCEI and severe weather
warnings (severe thunderstorm and tornado) were then linked
to nearby storms in the database using the methodology de-
scribed in Sandmel et al. (2019).

The GridRad predictor variables (upper portion of Table 2)
were selected to capture storm dynamical and microphysical
characteristics and were derived using automated methods that
could be or have previously been related to the occurrence of
severe weather at the ground. The polarimetric GridRad fields
afford us a quantitative ability to identify in-cloud precipitation
fields as related to the main updraft and downdraft structures
within severe convective storms (Klemp and Rotunno 1983;
Rotunno 1993; Markowski and Richardson 2010). The more
unique radar fields used in the analysis to follow include the
ratio between the maximum differential reflectivity Zpg and
specific differential phase Kpp, radial velocity spectrum width
(related to so-called Zpg columns; Hall et al. 1980; Illingworth
et al. 1987; Kumjian et al. 2014), correlation coefficient (CC)
minimum in volumes where Z, > 45dBZ, hail differential
radar reflectivity (Hpg; Depue et al. 2007), volume of hail
Hpr > 20dB, volume of hail identified by a hydrometeor
classification algorithm (HCA; Park et al. 2009), maximum
vertically integrated liquid (VIL) density (Amburn and Wolf
1997), maximum expected size of hail (MESH; Marzban and
Witt 2001; Stumpf et al. 2004), area of MESH = lin. (1in. =
2.54cm), radar-estimated radial divergence, and radar-
estimated implied ascent (Kumjian and Lombardo 2017).

b. GOES-14 super rapid scan data

Beginning in summer 2012, GOES-14 satellite operated
periodically in “Super Rapid Scan Operations for GOES-R”
mode to collect 1-min SRS imagery in preparation for GOES-R
series ABI imagery (from 30s to 1 min; Schmit et al. 2005, 2014,
2015). Use of actual GOES-16/-17 data, along with Geostationary
Lightning Mapper (GLM) lightning fields instead of ENTLN
data, would extend the present study.

For this study, innovative new fields developed from GOES-
14 SRS data were demonstrated. These satellite fields include a
probabilistic infrared- and NWP-based OT identification and
cloud-top texture, based on spatial patterns in visible imagery
(Bedka and Khlopenkov 2016), and mesoscale atmospheric
motion vector (mAMYV) derived cloud-top divergence (CTD)
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and cloud-top vertical vorticity (CTV; Apke et al. 2016, 2018).
In addition, infrared temperature comparisons to the sur-
rounding anvil and the tropopause, using the North American
Regional Reanalysis (NARR; Mesinger et al. 2006) tropo-
pause temperature, were also evaluated, which serve as an-
other GOES metrics of updraft intensity since it relates to the
depth of an OT and how far an OT may extend above the
tropopause. CTD fields were found to be significantly larger for
severe, deep convective storms compared to benign storms,
based on a smaller sample of these data (Apke et al. 2018), and
we would like to see whether CTD provides useful predictive
information when used in concert with radar and lightning
fields. Above-anvil cirrus plumes (AACP) were manually
identified in the GOES SRS data using methods described in
Bedka et al. (2018). These plumes and the associated ‘“‘en-
hanced V" signatures have been found atop severe storms in
many studies (Bedka et al. 2018, and references therein). All
satellite fields were parallax corrected to spatially match the
radar and lightning data; in this study, the 5-dBZ radar Z
echo-top altitude is used to estimate cloud-top height and thus
to correct for parallax.

Given the reliance on visible GO ES-14 data to create many of
the above satellite fields, only daytime cases were used. Despite
this requirement, >90% of the 2004 storm-cell database was
available for analysis. Daytime over the U.S. Midwest is between
1300 UTC (local morning, 0700 or 0800 depending on daylight
saving time) and 0100 UTC (local evening, 1900 or 2000).

In cases of weaker convective storms, some predictors were
not defined during the lifetime of a radar-defined storm cell.
For example, if the OT probability is zero (i.e., no OT was
detected within infrared imagery), the “GOES brightness
temperature (75) minimum-NARR tropopause temperature”
(i.e., the depth of an OT relative to the local tropopause) field is
set to zero or a small number to reflect a cloud-top Ty near the
NARR tropopause temperature. OT probability is a logistic
regression determination that an OT exists based on several
satellite parameters including Ty gradients atop anvil clouds
and the Ty with respect to the tropopause, with probabilities
from 0% to 100% (see Bedka and Khlopenkov 2016). In the
predictor importance analysis and random-forest training, all
predictors were required to be available (not missing); if this
was not done, a given predictor’s relative importance within a
random-forest model would be inaccurately described
(Hapfelmeier and Ulm 2013), and similarly the random-
forest model would not be trained in an accurate manner.
Furthermore, in random-forest predictive modeling, missing
“important” predictors will cause less accurate forecasts be-
cause, without them, the random-forest model’s performance
would be limited (Hapfelmeier and Ulm 2013). Thus, if the
random-forest model developed in this study were run opera-
tionally, its overall predictive skill could be less than that
documented here because of occasional missing predictors.
The stated sizes of the training, validation and testing data-
bases below have excluded the times with missing predictors.

c. ENTLN lightning flash detection

The ENTLN fields were processed into total lightning flash
density, intracloud flash density, and cloud-to-ground flash
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TABLE 2. List of 49 GridRad radar, ENTLN lightning, and GOES-14 satellite predictor variables evaluated in this study. See the list of
acronyms in appendix A for definitions.

Predictor Predictor variable Unit Reference(s)
1-4 Zy; 10-, 20-, 30-, and 40-dBZ echo-top altitude km
5 Radar Z;; column max dBZ
6 Max Zpgr/Kpp column altitude km Kumjian et al. (2014); Homeyer and Kumjian (2015)
7 Spectrum width column max ms”! Zrni¢ and Doviak (1975); Zrnic et al. (1985)
8 Spectrum width 1-3-km max ms! Zrni¢ and Doviak (1975); Zrnic¢ et al. (1985)
9 CC min where Z;; = 45dBZ Unitless Picca and Pyzhkov (2012)
10-11 Zpgr min and median where Zy = 45dBZ dB
12 Hpgr column max dB Depue et al. (2007)
13 Volume of Hpr = 20dB km?
14 Area of SL3D-classified convection km? Starzec et al. (2017)
15 Volume fraction of HCA-classified hail Unitless Park et al. (2009)
16 Volume of radar echo km’®
17 Area of HCA-classified hail at 3km km®
18 Depth of HCA-classified hail km
19 Max VIL density gm? Amburn and Wolf (1997)
20 Area of VIL density > 1.5gm™> km?
21 Max expected size of hail maximum cm
22 Area of MESH > 2.5cm km?
23 GridRad vorticity column max x1073s7!
24-26 GridRad vorticity 1-3-km, 4-7-km, and 8+-km max x1073s~
27 GridRad divergence column max x1073s7!
28 GridRad divergence 8+-km max x1073s7!
29 GridRad divergence 1-3-km min x1073s7!
30-31 GridRad median and max implied ascent ms™!
32 GridRad implied ascent area km?
33 ENTLN total lightning flash density Count
34 ENTLN intracloud lightning flash density Count
35 ENTLN cloud-to-ground lightning flash density Count
36 GOES overshooting top detection Unitless Bedka and Khlopenkov (2016)
37 GOES max overshooting top probability Percent Bedka and Khlopenkov (2016)
38 GOES overshooting top area km? Bedka and Khlopenkov (2016)
39 GOES anvil detection Unitless Bedka and Khlopenkov (2016)
40 GOES IR T min-NARR tropopause temperature K
41 GOES IR Tj difference OT and anvil K
42 GOES max visible texture detection rating Unitless Bedka and Khlopenkov (2016)
43-44 GOES mAMYV CTV max and mean X107*s™!  Apke et al. (2016)
45-46 GOES mAMV CTD max and mean x107%s™1  Apke et al. (2016)
47 GOES mAMYV area where CTD >15 X 10 *s™! km? Apke et al. (2016)
48 GOES mAMYV wind magnitude of mean flow ms~! Apke et al. (2016)
49 Above-anvil cirrus plume Unitless Bedka et al. (2018)

density, as described in Sandmel et al. (2019). First, lightning
sources close together in space and time (1 km and 100 ms) are
grouped into flashes, and then they are binned into 0.08° X
0.08° longitude-latitude flash density grids (Goodman et al.
2013), which was done to mimic the spatial resolution of data
provided by the GOES-16 and -17 GLM instrument. These
100-ms point data flashes were integrated to 1-min times within
the ~10-km (0.08°) boxes. Second, the 1-min spatial maximum
of the total ENTLN lightning flash density was extracted over a
radius of 10km along each storm track over time and subse-
quently used to populate the cell-track database. Rapid in-
creases in lightning over 5-10-min time periods, the so-called
lightning jump as described in Schultz et al. (2011, 2015), have
been correlated to increases in severe weather. Although
lightning jumps specifically are not included in the random-
forest framework here, we acknowledge any work using
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ENTLN or GLM lightning jump fields within the machine-
learning model framework are avenues for future research.

d. SWDI

The NCEI hosts the SWDI storm event database that con-
tains the time, duration, location, magnitude, and source of all
confirmed U.S. severe weather reports. Severe weather is the
occurrence of severe winds (=25ms '), large hail (=2.5 cm in
diameter), or tornadoes. The SWDI-based reports were pro-
cessed into the cell-track database using the method of
Sandmel et al. (2019). Although the NCEI SWDI database
provides the most comprehensive account of historical se-
vere weather events in the United States, well-established
reporting biases (e.g., population density) can influence severe
weather-storm report relationships (Doswell et al. 2005; Trapp
et al. 2005, 2006; Verbout et al. 2006; Brotzge et al. 2011).



1730

45.0°

40.2°

35.5°

30.8°

26.0° o
-110.0°

-103.8° -97.5° -91.2° -85.0°

FIG. 2. Cell-track map for the 2004 storms that were used in this
study, when storms lasted at least 30 min, for the days as listed in
Table 1. The variation in line colors is to improve the visual in-
terpretation of overlapping storm tracks.

Specifically, severe weather reports tend to be biased high in
regions with higher population, simply because more people
are likely to experience and report severe weather. In contrast,
low biases in storm reports occur in regions with very low
population.

Early efforts focused on use of severe weather reports as the
“predictand” or response variable within the random forests’
predictor importance and model training analysis. However,
these analyses were made difficult when instantaneous point-
based reports were used to represent the time continuum of
severe weather events, for example, a single hail report at one
time might be issued for a hailstorm that lasted for ~1h. The
choice was therefore to conduct our analysis using NWS severe
thunderstorm and tornado warnings, representing an expert-
generated dataset of the expected timing and locations of se-
vere weather. Verification of random-forest model prediction
skill is made against severe thunderstorm and tornado warn-
ings, while nonstatistical comparison to NCEI SWDI reports is
shown later to demonstrate utility of the predictions.

e. NWS severe thunderstorm and tornado warnings

All NWS warnings included issuance and expiration times,
and polygon coordinates outlining the warned area, and were
obtained from Iowa State University (Iowa Environmental
Mesonet 2017). If a given storm track crossed a warning
polygon, the warning was categorically (severe thunderstorm
or tornado) documented at all 1-min valid times along a track
in the cell-track database. Warnings as issued by the NWS are
imperfect, while we felt that use of warnings was preferred to
use of reports for the reasons already stated. It is important to
note that forecasters use radar as a primary tool for severe
weather warning operations (e.g., Fig. 1), so we expect the
importance analysis to return relatively high importance for
some common radar derived fields (e.g., Zy and MESH).
However, knowledge of the convection environment, local
ground reports, and regional experience can also influence
warning issuance, which sometimes deviates from radar field
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interpretations. It is here that additional datasets (e.g., satel-
lites and lightning) could add value in diagnosing severe
thunderstorms over radar analysis alone.

3. Method

Every minute in the database was classified as a “severe” (a
warning was in effect) or “non-severe” (no warning was in
effect) event. Thus, each minute of a storm lifetime is consid-
ered an “‘event” for random-forest training and variable im-
portance analysis, which constitutes 92216 separate events.
The set of predictor variables used is shown in Table 2, and 523,
143, and 75 of the cells in the training, testing, and validation
databases, respectively, had associated severe weather warn-
ings, while 879, 259, and 125 of the cells, respectively, were
unwarned (and assumed nonsevere) convective storm cells.

This study initially examined predictor importance and
random-forest model development based on a single type of
severe weather (e.g., hail only and wind only). In the end, it was
found that random-forest model training was made very diffi-
cult because similar predictor values were often found for
storm cells both with and without hail or wind reports in close
time proximity. The net effect was very poor random-forest-
based analyses with nearly no prediction skill. Specifically,
when wind-only *5-min time-padded SWDI reports were
used, hit rates (HRs) were 0.178-0.259 and false alarm ratios
(FARSs) were from 0.625 to 0.655; the skill for forecasting hail-
only reports was even lower with HRs of 0.036-0.071 and
FARs of 0.792-0.816. When *10-min time-padded reports
were used for wind-only events, the above scores improved to
0.256 and 0.495 for HR and FAR, respectively; for hail-only
events, the HR and FAR scores are 0.405 and 0.650, respec-
tively. [All skill scores used in this paper are defined in
appendix B]. The reason for these poor HR and FAR scores
when time-padding reports were used is because of the artifi-
cial expansion of the hail and wind events into times when
severe hail and winds were not occurring. Random-forest
model training was thus not done in a manner that related
predictor fields to severe weather reports in any meaningful
way. In the case of more-long-lasting tornadoes, predictor
importance analysis and random-forest forecasts for =5-min
time-padded reports yielded better results, yet HR and FAR
scores were only 0.360 and 0.643, respectively. Because of these
complications, the more-time-continuous predictand of severe
warnings was used (typically lasting 20-40 min).

The MATLAB 9.5 (release R2018b) ““treebagger” software
package (MATLAB 2018a) was used to train the random-
forest algorithm and make the predictions. In random forests,
the choice was to use 100 trees since in early assessments the
improvement in model performance [in terms of critical suc-
cess index (CSI) skill] did not increase beyond ~90 trees.

There are many parameters that could be adjusted in ran-
dom forests, such as the cost of classifying an example as class j
if the true class is i (default value is 1 if i # j and 0 if i = j), the
number of predictor variables to loop through at each split
node (default is all), and the minimum number of examples at a
leaf node (default is 5). The default settings for each of these
parameters were used on the basis of the documentation for
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FIG. 3. Schematic diagram illustrating how random-forest decision trees are used to form a final prediction
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MATLAB 9.5 R2018b. Random forests are an ensemble of
individual decision trees that is used to predict a desired out-
come (in this case, the occurrence of a severe weather warning),
and uses ‘‘bagging/bootstrapping” and “‘subspace sampling”
across the forest of trees. Bagging is done for each tree in the
ensemble of decision trees as trained on a random ‘boot-
strapped” partial sample of the training database, while keeping
all predictor fields. Bagging/bootstrapping is thus resampling
with replacement, drawing M examples from a dataset of M
examples. This randomized training procedure guarantees that
the decision trees are unique; individual decision trees often
overfit with large biases, while a large set of diverse trees should
have roughly offsetting biases such that the ensemble of trees
would have an overall low bias. Each tree (100 in this case) in the
forest determines a class prediction or “vote” on the outcome,
and the vote counts can be calibrated into reliable probability
forecasts, as shown schematically in Fig. 3.

Predictor importance was done using the training database
given that it was larger than the validation database (as de-
scribed below), which is expected to provide more statistically
significant results. Within random-forest predictor importance
is so-called Gini-based, meaning that the decision to split at
each node of a decision tree (while it is being constructed) is
based on a Gini impurity (GI) measure. GI is one way to
evaluate the importance of a set of predictor variables as av-
eraged over N, trees in the forest (7' = 100 trees in this study).
The relationship is given (based on Louppe et al. 2013):
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The parameter L is the number of possible class labels, which is
set to 2 for this study, where p; is the percentage (or proba-
bility) of severe-warned events and p, is the percentage (or
probability) of unwarned events. When using GI to measure
impurity this is known as the Gini importance. GI is used in
decision tree algorithms to both determine the optimal split
from a root node as a tree is grown and to determine additional
node splits. GI tells us the likelihood or probability of an in-
correct classification of an event when using a given predictor.
In random forests, the lower the GI for all predictors across all
N, trees is, the lower is the chance of an event being mis-
classified (Tan et al. 2005; chapter 4). For each predictor var-
iable, the sum of the “Gini impurity decrease’ is computed for
all trees of the forest every time a given variable is chosen to
split a decision tree node. The scale of predictor importance is
irrelevant, while instead the relative importance magnitudes
between predictors are most relevant. For a given predictor
variable, the smaller the GI, the more that variable contributed
to the decision to use it to split a growing decision tree and
create a new node.

Three other predictor-ranking-importance methods were
used: permutation feature selection (PFS; Breiman 2001) and
sequential selection [forward (SFS) and backward (SBS)], with
both implementations done in MATLAB 9.5 R2018b
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(MATLAB 2018b,c). McGovern et al. (2019) provides an ex-
planation of PFS, SFS, and SBS methods, which are briefly
summarized here. In PFS, the importance of a predictor is
measured by computing the increase in the model’s prediction
error after randomly permuting the predictor set, or specifi-
cally permuting predictors one variable at a time and mea-
suring changes in model performance when a comparison is
made to the unpermuted data. If after shuffling a predictor x’
the model error increases, a predictor is determined to be
“important,” which implies that the model relied on the pre-
dictor for a prediction. In contrast, if after shuffling model error
remains essentially unchanged, x’ is deemed “‘unimportant”
because the model ignored x’ for the prediction. The main
purpose of using PFS is to determine how model performance
degrades when the statistical relationship between a given
predictor and the predictand is purposely broken.

SES is a greedy search algorithm, which means that it se-
quentially adds in an x' that decreases the deviance D(X}, + x)
when combined with the predictors X that have already
been selected. Deviance D is a generalization of the residual
sum of squares. In SFS, sequential selection is incorporated
into the model-training procedure, whereas the permutation
test in PFS is applied to an already-trained model, which is
the main difference between the two selection tests. SFS
begins with a climatological model (for which forecast
severe-weather probability is always the frequency over the
training data), with a predictor being added per iteration
provided that the change in D is more than the change ex-
pected from random chance, based on a chi-squared distribu-
tion with one degree of freedom (3.8415). SBS, in contrast,
begins with a model containing all predictor variables; this is
the model one would train by default if one were not concerned
with predictor importance. SBS removes an x” if the increase in
D is less than 3.8415.

In this study, SFS yielded a smaller predictor set (below the
49 total predictors in Table 2), while the SBS solution included
all 49 variables. SBS retained all predictors because the D in-
crease was less than the D change caused by random chance,
even if any predictor was removed. Retaining all predictors in
SBS, while some were dismissed in SFS, suggests that some
variables have predictive power only in combination, that is,
only if certain other variables are included as well. Because the
SBS results to follow are therefore no different than when all 49
variables are included in the random-forest model, SBS is not
discussed further. Despite its use, a drawback of SFS is that it will
not remove a predictor previously selected if an older predictor
becomes obsolete because of redundancy (Riickstief et al. 2011).
Given use of PFS and SFS, in addition to the GI approach, as the
predictor reductions yielded generally similar results regardless of
the method (see below), the determination was made to not ex-
plore other predictor selection methods, such as multipass per-
mutation or partial-dependence plots (see McGovern et al. 2019).

Related to correlated predictors, for GI it has been shown
that when two predictors are correlated and deemed to be
important, a duplicated predictor lowers the importance of the
original predictor, and their importance will tend to be
equivalent (Strobl et al. 2008). When two predictors are cor-
related, the PFS will rank neither as important (McGovern
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et al. 2019). For SFS, if a set of two or more variables jointly are
important, but individually those variables are not important
for the predictand, then they might not be selected, explaining
why SFS may yield a smaller set of predictors than SBS.

Of the entire database, 70% of randomly selected complete
storm tracks across the 2014 and 2015 database were used to
assess predictor importance and to train the random-forest
model, 10% of randomly selected complete storm tracks were
used for a validation database (as noted above), and the
remaining 20% of complete storm tracks were used to test the
random-forest predictions, with no overlap in these three
samples. Hence, time steps from a given storm were not split
and are all in one of the three databases, which ensures inde-
pendence at the storm level. Therefore, of the 92216 total
events, 64551 events composed the training database, 9222
events composed the validation database, and 18443 events
made up the testing database. Storm tracks in both years
compose all three databases. For the 49-predictor GI predictor
importance evaluation, one variable reduction step was con-
ducted. Predictors were manually removed during the GI
evaluations if their importance was below the median impor-
tance value. For the PFS importance approach, when one im-
portance value was extremely high (see results for details)
variables were manually removed if th