
A Random-Forest Model to Assess Predictor Importance and Nowcast Severe Storms Using
High-Resolution Radar–GOES Satellite–Lightning Observations

JOHN R. MECIKALSKI,a THEA N. SANDMÆL,b ELISA M. MURILLO,b CAMERON R. HOMEYER,b

KRISTOPHER M. BEDKA,c JASON M. APKE,d AND CHRIS P. JEWETT
e

aAtmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama
b School of Meteorology, University of Oklahoma, Norman, Oklahoma

c Science Directorate, NASA Langley Research Center, Hampton, Virginia
dCooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

eEarth Systems Science Center, Huntsville, Alabama

(Manuscript received 23 August 2019, in final form 23 February 2021)

ABSTRACT: Few studies have assessed combined satellite, lightning, and radar databases to diagnose severe storm po-

tential. The research goal here is to evaluate next-generation, 60-s update frequency geostationary satellite and lightning

information with ground-based radar to isolate which variables, when used in concert, provide skillful discriminatory in-

formation for identifying severe (hail$ 2.5 cm in diameter, winds$ 25m s21, and tornadoes) versus nonsevere storms. The

focus of this study is predicting severe thunderstorm and tornado warnings. A total of 2004 storms in 2014–15 were ob-

jectively tracked with 49 potential predictor fields related to May, daytime Great Plains convective storms. All storms

occurred when 1-min Geostationary Operational Environmental Satellite (GOES)-14 ‘‘super rapid scan’’ data were avail-

able. The study used three importance methods to assess predictor importance related to severe warnings and used random

forests to provide a model and skill evaluation measuring the ability to predict severe storms. Three predictor importance

methods show that GOES mesoscale atmospheric-motion-vector-derived cloud-top divergence and above-anvil cirrus

plume presence provide the most satellite-based discriminatory power for diagnosing severe warnings. Other important

fields include Earth Networks Total Lightning flash density, GOES estimated cloud-top vorticity, and overshooting-top

presence. Severe warning predictions are significantly improved at the 95% confidence level when a few important satellite

and lightning fields are combined with radar fields, versus when only radar data are used in the random-forest model. This

study provides a basis for including satellite and lightning fields within machine-learning models to help forecast severe

weather.

KEYWORDS: Convective storms; Convective-scale processes; Radars/Radar observations; Satellite observations;

Nowcasting; Probability forecasts/models/distribution

1. Introduction and background

Statistical models have proven to be valuable for making

short-term forecasts of convective storms (Dixon and Wiener

1993; Wilson and Mueller 1993; Wilson et al. 1998; Mueller

et al. 2003; Lin et al. 2012). With the advent of high-resolution

satellite datasets (up to 0.5-km spacing per pixel, over 10

channels, available every ;1min), National Weather Service

(NWS) and other forecasters are challenged to integrate all

information in a timelymanner. Other high-resolution datasets

include operational numerical weather prediction (NWP)

models (;3–6-km grid spacing), ground- and space-based

lightning networks (e.g., Krehbiel et al. 2000; Koshak et al.

2004; Goodman et al. 2013), and advanced Doppler-radar

products (Zhang et al. 2011; Smith et al. 2016). The data-

integration task frequently proves very challenging in an op-

erational environment, often causing forecasters to rely on

outdated products or methods without taking more current

datasets into account, despite results from the latest research

that frequently show considerable diagnostic value within in-

dividual products derived from the abovementioned datasets

(e.g., Kumjian and Ryzhkov 2008; Schultz et al. 2015; Apke

et al. 2018; Bedka et al. 2018). Forecasters have recently

favored multi-data-source products, which presently oper-

ate using combined predictors that contain the most value

for objectively identifying pending events, for example se-

vere (or soon-to-be-severe) deep convection (Cintineo et al.

2014, 2020).

Present state-of-the-art methods that integrate a combina-

tion of weather datasets rely on raw and derived geostationary

satellite parameters, gridded radar observations and derived

products [e.g., theMulti-RadarMulti-Sensor (MRMS) product

suite; Zhang et al. 2016], and NWP model fields. With respect

to severe weather nowcasting (0–1 h forecasting), Probability

of Severe Convection (ProbSevere; Cintineo et al. 2014, 2018,

2020), theMeteoSwissContext and ScaleOrientedThunderstorm

Satellite Predictors Development (COALITION; Nisi et al.

2014), and the European Organisation for the Exploitation of

Meteorological Satellites (EUMETSAT) Nowcasting Satellite

Application Facilities (NWCSAF) Rapidly Developing

Thunderstorm (RDT;Autonès andMoisselin 2010; Gijben and

de Coning 2017) systems are statistical models that perform

such integration. Other models that have been developed to

diagnose or forecast convective storms and related hazards use

machine-learning methods for automated convective storm
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initiation nowcasting (Mecikalski et al. 2015), mesoscale con-

vective complex identification (Ahijevych et al. 2016), auto-

mated overshooting top (OT) identification (Bedka and

Khlopenkov 2016), hail forecasting (Gagne et al. 2017),

ensemble forecasts (Gagne et al. 2014), and damaging straight-

line wind diagnosis (Lagerquist et al. 2017). Machine-learning

approaches have recently become popular for use with satellite

remote sensing datasets (e.g., Kühnlein et al. 2014; Meyer et al.

2016; Beusch et al. 2018).

A guiding research question becomes: How useful are new

research-based fields derived from 1-min resolution data for

discriminating between severe and nonsevere convective

storms, especially when used in a machine-learning nowcast

model withmany predictor fields? The specific science goals we

address are the following: 1) Given use of only 5-min storm-

centered radar products in a machine-learning approach, what

is the skill for diagnosing severe weather? 2) Can the addition

of 1-min resolutionGOES satellite and lightning fields increase

diagnostic or predictive skill when used in combination with

radar data in a machine-learning model? 3) Which GOES-

derived and lightning fields are most beneficial for severe

weather diagnosis and nowcasting? The hypothesis guiding this

study is that if 1-min-resolution satellite or lightning datasets

provide useful information toward diagnosing and predicting

severe weather, then the addition of said fields with radar ob-

servations will make for a more skillful severe weather diag-

nostic and prediction system.

To address the above question and goals, storm cells are

tracked throughout their lifetime using gridded volumetric

dual-polarization NEXRAD datasets (GridRad; Homeyer

et al. 2017). GridRad analyses of storm microphysics and in-

ferences of updraft and rotation intensity, GOES-14 fields,

Earth Networks Total Lightning Network (ENTLN; Rudlosky

2015) fields, and severe weather reports and human issued

NWS warnings (severe thunderstorm or tornado) are linked to

the storm tracks. Several methods are subsequently used to

determine predictor importance beginning with 49 predictors.

The most useful predictors are then used within a random-

forest predictive model, and the accuracy of the model to

identify storms with severe thunderstorm or tornado warnings,

with and without satellite and lightning fields, is assessed. A

first evaluation considered performing this study using severe

weather reports, which is described further below.

It is well known that ground-based radar on its own

provides a valuable dataset for diagnosing and predicting se-

vere weather potential from convective storms (see Fabry

2015; chapter 7). However, prior to the present study, it is

unclear how several new lightning- and satellite-derived

products produced from 1-min resolution data can improve a

machine-learning model’s ability to automatically detect and

predict severe storm occurrence. Until GOES-14, geosta-

tionary satellites had not routinely observed storms at time

frequencies high enough (,5min) to capture the often-rapid

changes in cloud characteristics indicative of impending severe

weather, limiting our ability to derive such new satellite fields.

Hence, the novel aspects of the present study are the applica-

tion of machine learning to identify severe convective storms

using new nonoperational state-of-the-art radar, lightning and

geostationary satellite-based fields together, as derived from

1-min resolution datasets, and determining which of these

fields are most important to this forecast process. The desired

outcome is to provide forecasters and developers of forecast

systems increased understanding of the utility of new GOES-

R-era experimental datasets designed for severe weather

prediction.

2. Data

The following sections overview each dataset, and specifi-

cally how they were formed and processed into the main cell-

track database as used for random-forest model development.

Figure 1 shows a few of the datasets for a supercell storm near

the Denver (Colorado) International Airport. When used

individually, a forecaster (and similarly, a machine) can isolate

the severe convection using strong divergence near a satellite-

observed OT, which was associated with high lightning flash

rates and strong reflectivity.

a. GridRad data and storm cell tracks

The main dataset used, as described in Sandmæl et al. (2019)
and Murillo and Homeyer (2019), was a database of 49 radar,

satellite, and lightning fields every minute along the cell tracks

of convective storms across seven case study days listed in

Table 1. The terms ‘‘storm’’ and ‘‘cell’’ are used interchange-

ably throughout this paper. This cell-track database consists of

1)GOES-14 1-min ‘‘super rapid scan’’ (SRS) observations and

derived fields that were collected periodically from 2012 to

2015, yet cases from 2014 to 2015 were used for this study given

the availability of additional satellite-based fields; 2) four-

dimensional volumes of GridRad variables at 5-min resolution

on each day processed; and 3) ENTLN lightning observations

at 1-min resolution. The specific case study days were selected

when severe weather occurred within the GOES-14 SRS

1000 km 3 1000 km Flex Mesoscale sectors, analogous to

Mesoscale Domain Sectors collected by GOES-16 and -17

from the Advanced Baseline Imager (ABI).

NEXRAD Level II (i.e., volume) data used to derive the

cell-track database were gathered from the National Oceanic

and Atmospheric Administration (NOAA) National Centers

for Environmental Information (NCEI). All NEXRAD

observations were obtained typically at 14 elevations per

volume, at a range resolution of 250m, and an azimuthal

resolution of 0.58, for the lowest three–four elevations, and

1.08 otherwise. The radar data were processed using the

four-dimensional space–time merging methods described in

Homeyer and Bowman (2017), which provide volumes of

GridRad radar variables at 2-km horizontal, 1-km vertical,

and 5-min temporal resolutions over the extent of the

GOES-14 SRS domains for all case study days. A total of

2004 cells were tracked for all study days. It is well recog-

nized that the main database used is limited to May, daytime

U.S. Great Plains severe weather events. Hence, the results

to follow in terms of diagnosing and predicting severe

storms may not generalize well to broader regions of the

United States or to nighttime and more ‘‘pulse like’’ summer-

time severe weather events.
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Cell tracking was performed using an automated echo-top

algorithm introduced byHomeyer et al. (2017) andBedka et al.

(2018). Gaussian-smoothed local maxima in echo-top alti-

tudes, where the horizontal reflectivity ZH is at least 40 dBZ,

are identified in each 5-min radar observation, and individual

echo-top maxima are temporally pieced together if they lie

within 12.5 km of each other over a period of 5min. The 40-

dBZ echo-top maxima are subsequently filtered by the con-

vective echo classification output, as provided by the Storm

Labeling in Three Dimensions (SL3D) algorithm (Starzec

et al. 2017). The SL3D algorithm uses GridRad data to ob-

jectively classify radar echoes based on storm height, depth,

and intensity for storm updraft classification. Tracked echo-top

maxima are required to exceed 4 km above ground level

altitude and occur for at least 15min of radar analyses; hence

storms with lifetimes , 15min are not analyzed. Radar ZH

imagery of the objectively tracked storms were quality-

controlled (as in Sandmæl et al. 2019), and then were used to

extract maximum or minimum field values from each dataset

within a 10-km radius of the storm location at 1-min intervals.

Missing and unavailable radar data at resolutions. 5min were

interpolated linearly in time to the storm track locations at

1-min resolution. Once accomplished, the final cell-track da-

tabase contained all variables listed in Table 2 every minute

of a given storm’s lifetime for all 2004 cells. Figure 2 shows

tracks for the 2004 storms that were processed on the seven

days examined (see Table 1). Severe Weather Data Inventory

(SWDI; National Centers for Environmental Information 2017)

FIG. 1. Four of the main GridRad, ENTLN, andGOES-14 datasets used in this study, specifically for 2138 UTC

21 May 2014 over central Colorado (this is just after a supercell overtook the Denver radar KFTG): (a) satellite-

derived cloud-top divergence (CTD; s21) with overshooting tops (OTs; green filled pixels), (b) ENTLN flash extent

density, (c) GridRad horizontal reflectivity Zh at 3 km, and (d) GridRad 20-dBZ echo tops (ETs).
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severe weather reports from the NCEI and severe weather

warnings (severe thunderstorm and tornado) were then linked

to nearby storms in the database using the methodology de-

scribed in Sandmæl et al. (2019).
The GridRad predictor variables (upper portion of Table 2)

were selected to capture storm dynamical and microphysical

characteristics and were derived using automatedmethods that

could be or have previously been related to the occurrence of

severe weather at the ground. The polarimetric GridRad fields

afford us a quantitative ability to identify in-cloud precipitation

fields as related to the main updraft and downdraft structures

within severe convective storms (Klemp and Rotunno 1983;

Rotunno 1993; Markowski and Richardson 2010). The more

unique radar fields used in the analysis to follow include the

ratio between the maximum differential reflectivity ZDR and

specific differential phase KDP, radial velocity spectrum width

(related to so-called ZDR columns; Hall et al. 1980; Illingworth

et al. 1987; Kumjian et al. 2014), correlation coefficient (CC)

minimum in volumes where ZH . 45 dBZ, hail differential

radar reflectivity (HDR; Depue et al. 2007), volume of hail

HDR . 20 dB, volume of hail identified by a hydrometeor

classification algorithm (HCA; Park et al. 2009), maximum

vertically integrated liquid (VIL) density (Amburn and Wolf

1997), maximum expected size of hail (MESH; Marzban and

Witt 2001; Stumpf et al. 2004), area of MESH $ 1 in. (1 in. 5
2.54 cm), radar-estimated radial divergence, and radar-

estimated implied ascent (Kumjian and Lombardo 2017).

b. GOES-14 super rapid scan data

Beginning in summer 2012, GOES-14 satellite operated

periodically in ‘‘Super Rapid Scan Operations for GOES-R’’

mode to collect 1-min SRS imagery in preparation for GOES-R

series ABI imagery (from 30 s to 1min; Schmit et al. 2005, 2014,

2015). Use of actualGOES-16/-17 data, along withGeostationary

Lightning Mapper (GLM) lightning fields instead of ENTLN

data, would extend the present study.

For this study, innovative new fields developed fromGOES-

14 SRS data were demonstrated. These satellite fields include a

probabilistic infrared- and NWP-based OT identification and

cloud-top texture, based on spatial patterns in visible imagery

(Bedka and Khlopenkov 2016), and mesoscale atmospheric

motion vector (mAMV) derived cloud-top divergence (CTD)

and cloud-top vertical vorticity (CTV; Apke et al. 2016, 2018).

In addition, infrared temperature comparisons to the sur-

rounding anvil and the tropopause, using the North American

Regional Reanalysis (NARR; Mesinger et al. 2006) tropo-

pause temperature, were also evaluated, which serve as an-

other GOES metrics of updraft intensity since it relates to the

depth of an OT and how far an OT may extend above the

tropopause. CTDfields were found to be significantly larger for

severe, deep convective storms compared to benign storms,

based on a smaller sample of these data (Apke et al. 2018), and

we would like to see whether CTD provides useful predictive

information when used in concert with radar and lightning

fields. Above-anvil cirrus plumes (AACP) were manually

identified in the GOES SRS data using methods described in

Bedka et al. (2018). These plumes and the associated ‘‘en-

hanced V’’ signatures have been found atop severe storms in

many studies (Bedka et al. 2018, and references therein). All

satellite fields were parallax corrected to spatially match the

radar and lightning data; in this study, the 5-dBZ radar ZH

echo-top altitude is used to estimate cloud-top height and thus

to correct for parallax.

Given the reliance on visibleGOES–14data to createmany of

the above satellite fields, only daytime cases were used. Despite

this requirement, .90% of the 2004 storm-cell database was

available for analysis. Daytimeover theU.S.Midwest is between

1300 UTC (local morning, 0700 or 0800 depending on daylight

saving time) and 0100 UTC (local evening, 1900 or 2000).

In cases of weaker convective storms, some predictors were

not defined during the lifetime of a radar-defined storm cell.

For example, if the OT probability is zero (i.e., no OT was

detected within infrared imagery), the ‘‘GOES brightness

temperature (TB) minimum–NARR tropopause temperature’’

(i.e., the depth of anOT relative to the local tropopause) field is

set to zero or a small number to reflect a cloud-top TB near the

NARR tropopause temperature. OT probability is a logistic

regression determination that an OT exists based on several

satellite parameters including TB gradients atop anvil clouds

and the TB with respect to the tropopause, with probabilities

from 0% to 100% (see Bedka and Khlopenkov 2016). In the

predictor importance analysis and random-forest training, all

predictors were required to be available (not missing); if this

was not done, a given predictor’s relative importance within a

random-forest model would be inaccurately described

(Hapfelmeier and Ulm 2013), and similarly the random-

forest model would not be trained in an accurate manner.

Furthermore, in random-forest predictive modeling, missing

‘‘important’’ predictors will cause less accurate forecasts be-

cause, without them, the random-forest model’s performance

would be limited (Hapfelmeier and Ulm 2013). Thus, if the

random-forest model developed in this study were run opera-

tionally, its overall predictive skill could be less than that

documented here because of occasional missing predictors.

The stated sizes of the training, validation and testing data-

bases below have excluded the times with missing predictors.

c. ENTLN lightning flash detection

The ENTLN fields were processed into total lightning flash

density, intracloud flash density, and cloud-to-ground flash

TABLE 1. List of case days used to form the cell-track database

used in this study. The number of storm cells tracked, and the

number of minutes all storm cells on a given day were tracked at 1-

min time intervals, are also listed. Totals are listed in the bot-

tom row.

Day Cells per day 1-min cell-track times

10 May 2014 112 6977

11 May 2014 330 14 980

21 May 2014 54 2484

19 May 2015 329 18 004

24 May 2015 123 6208

25 May 2015 669 23 114

27 May 2015 387 20 463

Total 2004 92 216
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density, as described in Sandmæl et al. (2019). First, lightning
sources close together in space and time (1 km and 100ms) are

grouped into flashes, and then they are binned into 0.088 3
0.088 longitude–latitude flash density grids (Goodman et al.

2013), which was done to mimic the spatial resolution of data

provided by the GOES-16 and -17 GLM instrument. These

100-ms point data flashes were integrated to 1-min times within

the;10-km (0.088) boxes. Second, the 1-min spatial maximum

of the total ENTLN lightning flash density was extracted over a

radius of 10 km along each storm track over time and subse-

quently used to populate the cell-track database. Rapid in-

creases in lightning over 5–10-min time periods, the so-called

lightning jump as described in Schultz et al. (2011, 2015), have

been correlated to increases in severe weather. Although

lightning jumps specifically are not included in the random-

forest framework here, we acknowledge any work using

ENTLN or GLM lightning jump fields within the machine-

learning model framework are avenues for future research.

d. SWDI

The NCEI hosts the SWDI storm event database that con-

tains the time, duration, location, magnitude, and source of all

confirmed U.S. severe weather reports. Severe weather is the

occurrence of severe winds ($25m s21), large hail ($2.5 cm in

diameter), or tornadoes. The SWDI-based reports were pro-

cessed into the cell-track database using the method of

Sandmæl et al. (2019). Although the NCEI SWDI database

provides the most comprehensive account of historical se-

vere weather events in the United States, well-established

reporting biases (e.g., population density) can influence severe

weather-storm report relationships (Doswell et al. 2005; Trapp

et al. 2005, 2006; Verbout et al. 2006; Brotzge et al. 2011).

TABLE 2. List of 49 GridRad radar, ENTLN lightning, and GOES-14 satellite predictor variables evaluated in this study. See the list of

acronyms in appendix A for definitions.

Predictor Predictor variable Unit Reference(s)

1–4 ZH 10-, 20-, 30-, and 40-dBZ echo-top altitude km

5 Radar ZH column max dBZ

6 Max ZDR/KDP column altitude km Kumjian et al. (2014); Homeyer and Kumjian (2015)

7 Spectrum width column max m s21 Zrnić and Doviak (1975); Zrnić et al. (1985)

8 Spectrum width 1–3-km max m s21 Zrnić and Doviak (1975); Zrnić et al. (1985)

9 CC min where ZH $ 45 dBZ Unitless Picca and Pyzhkov (2012)

10–11 ZDR min and median where ZH $ 45 dBZ dB

12 HDR column max dB Depue et al. (2007)

13 Volume of HDR $ 20 dB km3

14 Area of SL3D-classified convection km2 Starzec et al. (2017)

15 Volume fraction of HCA-classified hail Unitless Park et al. (2009)

16 Volume of radar echo km3

17 Area of HCA-classified hail at 3 km km3

18 Depth of HCA-classified hail km

19 Max VIL density gm23 Amburn and Wolf (1997)

20 Area of VIL density . 1.5 gm23 km2

21 Max expected size of hail maximum cm

22 Area of MESH . 2.5 cm km2

23 GridRad vorticity column max 31023 s21

24–26 GridRad vorticity 1–3-km, 4–7-km, and 81-km max 31023 s21

27 GridRad divergence column max 31023 s21

28 GridRad divergence 81-km max 31023 s21

29 GridRad divergence 1–3-km min 31023 s21

30–31 GridRad median and max implied ascent m s21

32 GridRad implied ascent area km2

33 ENTLN total lightning flash density Count

34 ENTLN intracloud lightning flash density Count

35 ENTLN cloud-to-ground lightning flash density Count

36 GOES overshooting top detection Unitless Bedka and Khlopenkov (2016)

37 GOES max overshooting top probability Percent Bedka and Khlopenkov (2016)

38 GOES overshooting top area km2 Bedka and Khlopenkov (2016)

39 GOES anvil detection Unitless Bedka and Khlopenkov (2016)

40 GOES IR TB min–NARR tropopause temperature K

41 GOES IR TB difference OT and anvil K

42 GOES max visible texture detection rating Unitless Bedka and Khlopenkov (2016)

43–44 GOES mAMV CTV max and mean 31024 s21 Apke et al. (2016)

45–46 GOES mAMV CTD max and mean 31024 s21 Apke et al. (2016)

47 GOES mAMV area where CTD .15 3 1024 s21 km2 Apke et al. (2016)

48 GOES mAMV wind magnitude of mean flow m s21 Apke et al. (2016)

49 Above-anvil cirrus plume Unitless Bedka et al. (2018)

JUNE 2021 MEC IKAL SK I ET AL . 1729

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/03/21 05:50 PM UTC



Specifically, severe weather reports tend to be biased high in

regions with higher population, simply because more people

are likely to experience and report severe weather. In contrast,

low biases in storm reports occur in regions with very low

population.

Early efforts focused on use of severe weather reports as the

‘‘predictand’’ or response variable within the random forests’

predictor importance and model training analysis. However,

these analyses were made difficult when instantaneous point-

based reports were used to represent the time continuum of

severe weather events, for example, a single hail report at one

time might be issued for a hailstorm that lasted for ;1 h. The

choice was therefore to conduct our analysis using NWS severe

thunderstorm and tornado warnings, representing an expert-

generated dataset of the expected timing and locations of se-

vere weather. Verification of random-forest model prediction

skill is made against severe thunderstorm and tornado warn-

ings, while nonstatistical comparison to NCEI SWDI reports is

shown later to demonstrate utility of the predictions.

e. NWS severe thunderstorm and tornado warnings

All NWS warnings included issuance and expiration times,

and polygon coordinates outlining the warned area, and were

obtained from Iowa State University (Iowa Environmental

Mesonet 2017). If a given storm track crossed a warning

polygon, the warning was categorically (severe thunderstorm

or tornado) documented at all 1-min valid times along a track

in the cell-track database. Warnings as issued by the NWS are

imperfect, while we felt that use of warnings was preferred to

use of reports for the reasons already stated. It is important to

note that forecasters use radar as a primary tool for severe

weather warning operations (e.g., Fig. 1), so we expect the

importance analysis to return relatively high importance for

some common radar derived fields (e.g., ZH and MESH).

However, knowledge of the convection environment, local

ground reports, and regional experience can also influence

warning issuance, which sometimes deviates from radar field

interpretations. It is here that additional datasets (e.g., satel-

lites and lightning) could add value in diagnosing severe

thunderstorms over radar analysis alone.

3. Method

Every minute in the database was classified as a ‘‘severe’’ (a

warning was in effect) or ‘‘non-severe’’ (no warning was in

effect) event. Thus, each minute of a storm lifetime is consid-

ered an ‘‘event’’ for random-forest training and variable im-

portance analysis, which constitutes 92 216 separate events.

The set of predictor variables used is shown in Table 2, and 523,

143, and 75 of the cells in the training, testing, and validation

databases, respectively, had associated severe weather warn-

ings, while 879, 259, and 125 of the cells, respectively, were

unwarned (and assumed nonsevere) convective storm cells.

This study initially examined predictor importance and

random-forest model development based on a single type of

severe weather (e.g., hail only and wind only). In the end, it was

found that random-forest model training was made very diffi-

cult because similar predictor values were often found for

storm cells both with and without hail or wind reports in close

time proximity. The net effect was very poor random-forest-

based analyses with nearly no prediction skill. Specifically,

when wind-only 65-min time-padded SWDI reports were

used, hit rates (HRs) were 0.178–0.259 and false alarm ratios

(FARs) were from 0.625 to 0.655; the skill for forecasting hail-

only reports was even lower with HRs of 0.036–0.071 and

FARs of 0.792–0.816. When 610-min time-padded reports

were used for wind-only events, the above scores improved to

0.256 and 0.495 for HR and FAR, respectively; for hail-only

events, the HR and FAR scores are 0.405 and 0.650, respec-

tively. [All skill scores used in this paper are defined in

appendix B]. The reason for these poor HR and FAR scores

when time-padding reports were used is because of the artifi-

cial expansion of the hail and wind events into times when

severe hail and winds were not occurring. Random-forest

model training was thus not done in a manner that related

predictor fields to severe weather reports in any meaningful

way. In the case of more-long-lasting tornadoes, predictor

importance analysis and random-forest forecasts for 65-min

time-padded reports yielded better results, yet HR and FAR

scores were only 0.360 and 0.643, respectively. Because of these

complications, the more-time-continuous predictand of severe

warnings was used (typically lasting 20–40min).

The MATLAB 9.5 (release R2018b) ‘‘treebagger’’ software

package (MATLAB 2018a) was used to train the random-

forest algorithm and make the predictions. In random forests,

the choice was to use 100 trees since in early assessments the

improvement in model performance [in terms of critical suc-

cess index (CSI) skill] did not increase beyond ;90 trees.

There are many parameters that could be adjusted in ran-

dom forests, such as the cost of classifying an example as class j

if the true class is i (default value is 1 if i 6¼ j and 0 if i 5 j), the

number of predictor variables to loop through at each split

node (default is all), and theminimum number of examples at a

leaf node (default is 5). The default settings for each of these

parameters were used on the basis of the documentation for

FIG. 2. Cell-track map for the 2004 storms that were used in this

study, when storms lasted at least 30min, for the days as listed in

Table 1. The variation in line colors is to improve the visual in-

terpretation of overlapping storm tracks.

1730 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/03/21 05:50 PM UTC



MATLAB 9.5 R2018b. Random forests are an ensemble of

individual decision trees that is used to predict a desired out-

come (in this case, the occurrence of a severe weather warning),

and uses ‘‘bagging/bootstrapping’’ and ‘‘subspace sampling’’

across the forest of trees. Bagging is done for each tree in the

ensemble of decision trees as trained on a random ‘‘boot-

strapped’’ partial sample of the training database, while keeping

all predictor fields. Bagging/bootstrapping is thus resampling

with replacement, drawing M examples from a dataset of M

examples. This randomized training procedure guarantees that

the decision trees are unique; individual decision trees often

overfit with large biases, while a large set of diverse trees should

have roughly offsetting biases such that the ensemble of trees

would have an overall low bias. Each tree (100 in this case) in the

forest determines a class prediction or ‘‘vote’’ on the outcome,

and the vote counts can be calibrated into reliable probability

forecasts, as shown schematically in Fig. 3.

Predictor importance was done using the training database

given that it was larger than the validation database (as de-

scribed below), which is expected to provide more statistically

significant results. Within random-forest predictor importance

is so-called Gini-based, meaning that the decision to split at

each node of a decision tree (while it is being constructed) is

based on a Gini impurity (GI) measure. GI is one way to

evaluate the importance of a set of predictor variables as av-

eraged over Nt trees in the forest (T 5 100 trees in this study).

The relationship is given (based on Louppe et al. 2013):

GI5
1

N
t

�
T
�
L

i51

p
i
(12 p

i
) .

The parameterL is the number of possible class labels, which is

set to 2 for this study, where p1 is the percentage (or proba-

bility) of severe-warned events and p2 is the percentage (or

probability) of unwarned events. When using GI to measure

impurity this is known as the Gini importance. GI is used in

decision tree algorithms to both determine the optimal split

from a root node as a tree is grown and to determine additional

node splits. GI tells us the likelihood or probability of an in-

correct classification of an event when using a given predictor.

In random forests, the lower the GI for all predictors across all

Nt trees is, the lower is the chance of an event being mis-

classified (Tan et al. 2005; chapter 4). For each predictor var-

iable, the sum of the ‘‘Gini impurity decrease’’ is computed for

all trees of the forest every time a given variable is chosen to

split a decision tree node. The scale of predictor importance is

irrelevant, while instead the relative importance magnitudes

between predictors are most relevant. For a given predictor

variable, the smaller theGI, themore that variable contributed

to the decision to use it to split a growing decision tree and

create a new node.

Three other predictor-ranking-importance methods were

used: permutation feature selection (PFS; Breiman 2001) and

sequential selection [forward (SFS) and backward (SBS)], with

both implementations done in MATLAB 9.5 R2018b

FIG. 3. Schematic diagram illustrating how random-forest decision trees are used to form a final prediction

probabilityPFINAL. Each decision tree (t1, t2, . . . , t100) produces a separate ‘‘vote’’ or outcome that is based on use of

a vector of n predictorsV(pn), which are in the form of probabilitiesP (P1, P2, . . . , P100) from 0% to 100%.Once all

trees are formed, the 100 probabilities are summed and averaged to form PFINAL.
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(MATLAB 2018b,c). McGovern et al. (2019) provides an ex-

planation of PFS, SFS, and SBS methods, which are briefly

summarized here. In PFS, the importance of a predictor is

measured by computing the increase in the model’s prediction

error after randomly permuting the predictor set, or specifi-

cally permuting predictors one variable at a time and mea-

suring changes in model performance when a comparison is

made to the unpermuted data. If after shuffling a predictor xf

the model error increases, a predictor is determined to be

‘‘important,’’ which implies that the model relied on the pre-

dictor for a prediction. In contrast, if after shufflingmodel error

remains essentially unchanged, xf is deemed ‘‘unimportant’’

because the model ignored xf for the prediction. The main

purpose of using PFS is to determine how model performance

degrades when the statistical relationship between a given

predictor and the predictand is purposely broken.

SFS is a greedy search algorithm, which means that it se-

quentially adds in an xf that decreases the devianceD(Xk1 xf)

when combined with the predictors Xk that have already

been selected. DevianceD is a generalization of the residual

sum of squares. In SFS, sequential selection is incorporated

into the model-training procedure, whereas the permutation

test in PFS is applied to an already-trained model, which is

the main difference between the two selection tests. SFS

begins with a climatological model (for which forecast

severe-weather probability is always the frequency over the

training data), with a predictor being added per iteration

provided that the change in D is more than the change ex-

pected from random chance, based on a chi-squared distribu-

tion with one degree of freedom (3.8415). SBS, in contrast,

begins with a model containing all predictor variables; this is

themodel one would train by default if one were not concerned

with predictor importance. SBS removes an xf if the increase in

D is less than 3.8415.

In this study, SFS yielded a smaller predictor set (below the

49 total predictors in Table 2), while the SBS solution included

all 49 variables. SBS retained all predictors because the D in-

crease was less than the D change caused by random chance,

even if any predictor was removed. Retaining all predictors in

SBS, while some were dismissed in SFS, suggests that some

variables have predictive power only in combination, that is,

only if certain other variables are included as well. Because the

SBS results to follow are therefore no different than when all 49

variables are included in the random-forest model, SBS is not

discussed further. Despite its use, a drawback of SFS is that it will

not remove a predictor previously selected if an older predictor

becomes obsolete because of redundancy (Rückstieß et al. 2011).

Given use of PFS and SFS, in addition to the GI approach, as the

predictor reductions yielded generally similar results regardless of

the method (see below), the determination was made to not ex-

plore other predictor selection methods, such as multipass per-

mutation or partial-dependence plots (seeMcGovern et al. 2019).

Related to correlated predictors, for GI it has been shown

that when two predictors are correlated and deemed to be

important, a duplicated predictor lowers the importance of the

original predictor, and their importance will tend to be

equivalent (Strobl et al. 2008). When two predictors are cor-

related, the PFS will rank neither as important (McGovern

et al. 2019). For SFS, if a set of two ormore variables jointly are

important, but individually those variables are not important

for the predictand, then they might not be selected, explaining

why SFS may yield a smaller set of predictors than SBS.

Of the entire database, 70% of randomly selected complete

storm tracks across the 2014 and 2015 database were used to

assess predictor importance and to train the random-forest

model, 10% of randomly selected complete storm tracks were

used for a validation database (as noted above), and the

remaining 20% of complete storm tracks were used to test the

random-forest predictions, with no overlap in these three

samples. Hence, time steps from a given storm were not split

and are all in one of the three databases, which ensures inde-

pendence at the storm level. Therefore, of the 92 216 total

events, 64 551 events composed the training database, 9222

events composed the validation database, and 18 443 events

made up the testing database. Storm tracks in both years

compose all three databases. For the 49-predictor GI predictor

importance evaluation, one variable reduction step was con-

ducted. Predictors were manually removed during the GI

evaluations if their importance was below the median impor-

tance value. For the PFS importance approach, when one im-

portance value was extremely high (see results for details)

variables were manually removed if they fell below the 25th-

percentile importance value. The predictor reduction steps

were done to identify a reduced set of more important pre-

dictors for use within a predictive random-forest model.

Similar variable reduction approaches have been done in a

wide range of studies (Evans and Cushman 2009; Rehfeldt

et al. 2012; Hill et al. 2013). Following the predictor importance

analysis using the 70% training database, the probability

threshold (that which maximizes CSI) used to evaluate model

performances was determined using the validation database,

and the random-forest models for diagnosing severe warnings

were evaluated with the 20% testing database.

Contingency-table values were computed to measure pre-

diction skill (Wilks 2011, 260–275; see Table 3). A ‘‘hit’’ is a

random-forest model forecast of severe warning conditions

occurring along a given cell’s track, whereas a ‘‘miss’’ is a

forecast of no severe warning conditions (see Table 3 for defini-

tions of the other two forecast categories). In this analysis, a

random-forest probability of 48% was chosen to maximize the

CSI on the testing data, as determined from the validation data-

base. Using the validation database, the maximumCSI where the

model biases were near 1.0 were determined using 500 randomly

selected sets of size ‘‘0.753 validation database’’ (0.75N, or 6917)

with replacement for the three top-performing models (32Radar,

12PFSRadar, 17GIRadSatLight), as shown in Figs. 4–6 . The

0.75N size was used to avoid oversampling the validation data-

base. Forecast probabilities$ 48% indicate a likelihood of severe

weather, and those below 48% indicate nonsevere conditions.

We evaluated models trained on full predictor sets, reduced

sets of important GridRad radar fields alone, and predictor sets

composed of mixed important GOES-14 SRS-derived and

ENTLN lightning fields along with radar data (related to sci-

ence question 2 in section 1). Six common scores were used:

(i) CSI, (ii) FAR, (iii) HR (also known as probability of de-

tection), (iv) Heidke skill score (HSS), (v) Peirce skill score
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(PSS) (also known as Hanssen–Kuiper skill score or true skill

statistic; Manzato 2007), (vi) probability of false detection

(POFD), and (vii) frequency bias. The area under the receiver

operating characteristic (ROC) curve (AUC) was also com-

puted to compare model performance with different predictor

sets (Wilks 2011). For FAR, HR, and POFD the range of

values is 0–1. The HSS ranges from 2‘ to 1, and the PSS

(which is not a true skill score) ranges from 21 to 1. The bias

ranges from 0 to ‘ in this study. Optimal values for each score

are a FAR of 0, HR of 1, HSS of 1, PSS of 1, POFD of 0, bias of

1, and AUC of 1 (Wilks 2011).

4. Results

Prior to our analysis, an evaluation of SWDI-based severe

weather in the storm cell-track database was done (see

Table 4). From Table 4, severe weather of any type occurred,
10% of the time within training and testing databases. No se-

vere reports were associated with 84%of the training database,

and hence this is not a severe weather-dominated database.

The Table 4 data are different than the severe weather warning

statistics presented above at the beginning of section 3.

a. Predictor importance evaluation

Figure 4 presents predictor importance results for all 49

predictors, using the GI, PFS and SFS importance methods.

Again, predictor importance ranking values are unitless and

represent a relative measure of importance (Tan et al. 2005;

Louppe et al. 2013). For model 5SFSRadSat, the first five

predictors chosen in the SFS selection method were used to

form this predictor set, and for the other two models the pre-

dictors above the median importance (17GIRadSatLight) and

75% (10PFSRadSat) importance values were used to form

these predictor sets. From Fig. 4, across all three predictor

importance evaluations, the most consistently important fields

are: 40-dBZ echo-top altitude, spectrum width 1–3-km maxi-

mum, volume of HDR . 20 dB, CTD . 15 3 1024 s21 (here-

inafter CTDA15) and AACP presence. The area of VIL

density. 1.5 gm23 andGridRad divergence 81-kmmaximum

are also important, while the ENTLN total lightning flash

density was found to be important only whenGI is used. GOES

mAMV CTV maximum was an important satellite field when

FIG. 4. Predictor importance (unitless) on the training data. (left) Gini impurity for all predictors. (center) Importance after one

reduction step. Red and blue bars respectively denote where predictor importance is above and below the median for the given set. (right)

Permutation feature selection (PFS) and sequential feature selection [forward (SFS), in parentheses] were used to identify important

fields. (right) The red bars denote fields that are above the 75th percentile of 1.0. Formodel 5SFSRadSat, the first five predictors chosen in

the SFS selection method were used to form this predictor set, and for the other two models the predictors above the median importance

value (17GIRadSatLight) and 75% importance value (10PFSRadSat) were used to form these predictor sets. Numbers next to each bar

denote the importance ranking per column, and parenthetical numbers for the SFS selections denote the order in which fields were

included in that importance ranking method.

TABLE 3. Example contingency table, as used to develop the skill

scores used in this study.

Event observed

Event forecast Yes No Equation

Yes a b a 1 b

No c d c 1 d

a 1 c b 1 d a 1 b 1 c 1 d 5 n
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GI was used. ENTLN total lightning flash density significantly

helped to discriminate between warned and unwarned events

yet was relatively less important when used along with 16 other

radar and satellite fields (see model 17GIRadSatLight below)

versus when used together with all other predictors.

The GridRad 40-dBZ echo top implies a deep convective

updraft (enough to loft a high density of large detectable hy-

drometeors to high altitudes), while the CTDA15 and AACP

also imply the presence of a stormwith a strong updraft, often a

supercell according to the analysis of Bedka et al. (2018). The

spectrum width 1–3-km maximum, HDR . 20 dB, and VIL

density.1.5 gm23 are indicative of large hail, melting hail, and

intense precipitation within a deep convective updraft. The

ENTLN total lightning flash density is related to severe

weather in a manner as described by Schultz et al. (2015, 2017),

specifically to large amounts of mixed-phase precipitation

particles within a storm’s main updraft that generate high flash

rates. Determining the top two–three fields by averaging the

results of the three importancemeasures, CTDA15, theAACP,

and spectrum width 1–3-km maximum are most correlated

with severe warnings. Since the 40-dBZ echo top was used in

tracking, this may have led to its high importance in this pre-

dictor importance evaluation. The 40-dBZ echo top field also

helps identify storms with strong updrafts that can loft signifi-

cant hydrometeors (e.g., large raindrops and graupel) to high

altitudes, enough to cause substantial in-cloud charge genera-

tion and large hail formation.

Predictor importance results for only radar fields (Fig. 5)

were obtained using GI and PFS, while the SFS approach

selected all 32 fields and hence provided no new information.

Figure 5 shows that within the overall 32 GridRad fields the

three most important fields are the volume of HDR . 20 dB,

area of HCA-classified hail at 3 km, and MESH. However, the

predictor importance method used led to considerable differ-

ences in which fields were most important, with GI suggesting

that ZDR minimum where ZH $45 dBZ was the most impor-

tant, compared to the spectrum width 1–3-km maximum when

PFS was used. All fields are correlated to convective storms

containing wide, strong updrafts supportive of long-term hail

production, and large hail is most likely to occur in storms that

have associated severe thunderstorm and tornado warnings.

Figure 5 lists other fields of higher importance as found by PFS,

all similarly related to the presence of hail and rotating

updrafts in a storm (maximum ZDR/KDP column altitude,

spectrum width column maximum, GridRad vorticity 1–3-km

maximum, and GridRad median implied ascent).

When satellite and lightning fields are considered alone us-

ing the three importance methods (Fig. 6), CTDA15, AACP,

GOES mAMV CTD mean, and GOES TB minimum–NARR

tropopause temperature are the four most important fields. All

four fields imply a tall OT and sustained updraft, and in the

case of the AACP, a sufficient upper-tropospheric storm rel-

ative wind shear environment supportive of gravity wave

breaking (Homeyer et al. 2017). Several of these important

fields are consistent with the results discussed related to Fig. 4.

The selection of these predictors confirms the prior studies by

Apke et al. (2016, 2018) for CTD and CTV, and Bedka et al.

(2018) for the AACP, as related to severe weather–producing

FIG. 5. As in Fig. 4, but with predictor importance (unitless) relative to severe thunderstorm and tornado warnings for the 32 radar

predictors of the full predictor list is in Table 2. All fields in which the predictor importance is above the median values are denoted as red

bars, which are the fields that compose the predictor sets for the 9-field model 9GIRadar and the 12-field model 12PFSRadar. As in Fig. 4,

PFS refers to permutation feature selection. Numbers next to each bar denote the importance ranking per column.
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storms. Bedka et al. (2018) found that AACPs occur ;30min

in advance of severe weather at the ground, and some storms

were found to continue to generate AACPs after producing

severe weather and weakening, analogous to mesocyclones

persisting in supercell storms after a tornado has ended. Hence,

AACP presence could artificially extend a random-forest

model warning prediction. In our database, 113 storms had

AACPs, while 21 of these had associated tornado reports, 68

had associated large hail reports, 18 had associated high wind

reports, and 43 were not associated with any severe weather.

Also, 98 of the AACP storms occurred during a severe warn-

ing, while 15 AACP storms did not.

b. Skill of different predictor sets

Eight random-forest models composed of eight unique

predictor combinations were evaluated. Figure 7 summarizes

Figs. 4–6, listing the predictors used in five random-forest models:

9GIRadar, 17GIRadSatLight, 12PFSRadar, 10PFSRadSat,

and 5SFSRadSat. Two additional models with no predictor

reductions (all 49 fields—49AllPredictors, and all 32 radar-only

fields—32Radar) were evaluated, along with another when the

32 radar fields were combined with two most important satel-

lite fields (CTDA15 and AACP; model 34RadSatLight).

Figure 8 shows ROC curves for the three random-forest

models 32Radar, 10PFSRadSat and 17GIRadSatLight, with

the 95% confidence intervals shaded per curve, which were

formed using 500 randomly selected sets of size ‘‘0.753 testing

database’’ (0.75N, or 13 832) with replacement for the three

models. The 0.75N size was used to avoid oversampling the

testing database. Summarizing Fig. 8: 1) The three models are

comparable, yet highest AUC of 0.78 is found for model

10PFSRadar. The 10PFSRadar random-forest model is com-

posed of a mix of radar, lightning and satellite fields (CTD

mean and CTDA15; Fig. 7); 2) the second most skillful model is

17GIRadSatLight with an AUC 5 0.75, which includes CTD

maximum, CTDA15, and AACP presence; and 3) use of only

radar predictors slightly diminished skill, given the 32Radar

model’s AUC of 0.73. A main conclusion here is that satellite

and lightning data in model 10PFSRadar add skill over the

radar-only model; however, since the confidence intervals are

largely overlapping, this skill increase may not be statistically

significant (which is discussed further below).

FIG. 6. As in Figs. 4 and 5, with predictor importance rankings (unitless) relative to severe thunderstorm and tornado warnings (the

‘‘predictand’’) for the 17 satellite and lightning predictors of the full predictor list is in Table 2. Importance values using (left)Gini impurity

(GI) importance and (right) PFS and SFS were used to identify important fields. The red bars in the left column are above the median

importance value, and the red bars in the right column denote fields that are above the 25th percentile. Numbers next to each bar denote

the importance ranking per column, and parenthetical numbers for the SFS selections denote the order in which fields were included in

that importance ranking method.

TABLE 4. The percentage of times that large hail (.2.5 cm),

strong winds (.25m s21), and tornadoes occurred for each storm

cell in the training, testing, and validation databases, as well as in

the entire database. Percentages were compiled using the NCEI

SWDI storm report dataset.

Severe weather type

Hail Wind Tornadoes No. of cells

Training 7.4% 5.8% 1.8% 1402

Testing 9.2% 2.2% 3.5% 402

Validation 6.5% 5.5% 1.5% 200

Entire 7.7% 5.0% 2.1% 2004
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As another way of assessing model skill, CSI and HSS scores

are compared for the eight models (predictors in Figs. 4–7) in

box-and-whisker plots in Figs. 9a and 9b. Like the ROC curves,

the box-plot distributions are formed using 500 randomly se-

lected sets of size 0.75N with replacement (13 832) for all eight

models. For the analysis of Figs. 9a and 9b, a 48% random-

forest probability was chosen as it maximized the CSI score for

every random forest. Figures 9a and 9b exemplify further that

when a combination of radar, lightning, and satellite fields is

used in a random-forest predictive model the CSI scores are

highest, whereas HSS scores for the 32Radar model are much

higher than those from the 17GIRadSatLight model, showing

that model 17GIRadSatLight provides better deterministic

forecasts of severe and nonsevere conditions. With the HSS

values being much higher for model 32Radar, it performs

better relative to standard forecasts expected to verify based

on chance. From Figs. 9a and 9b, the mean CSI andHSS values

for model 17GIRadSatLight peaked at 0.747 and 0.307, re-

spectively, and the 32Radar model produced the highest HSS

of all models at 0.477 yet had a lower CSI of 0.64. Model

10PFSRadSat produced a mean CSI of 0.719 and a mean HSS

of 0.27. The GI and PFS importance methods identified sets of

predictors with the highest model predictive CSI skills. From a

visual comparison of the 17GIRadSatLight and 10PFSRadSat

models to the 32Radar model in Figs. 9a and 9b, it is less clear

whether these two models are significantly better than

32Radar. When the CSI differences (32Radar–10PFSRadSat,

17GIRadSatLight–32Radar, and 17GIRadSatLight–10PFSRadSat)

are computed using 500 bootstrapped CSI values per model,

there is no overlap in the 17GIRadSatLight–32Radar and

32Radar–10PFSRadSat CSI-difference distributions. The

nonoverlapping distributions show that the p values are, 0.05,

demonstrating that the 32Radar model is significantly less

skillful than the 17GIRadSatLight and 10PFSRadSat models

(i.e., we reject the null hypothesis that the two model are

equivalent). For the 17GIRadSatLight–10PFSRadSat CSI-

difference distribution, the percentile of zero difference is

0.0762 (i.e., the p value), meaning that we cannot reject the null

hypothesis since the distributions are not statistically different

at the 95% confidence interval.

Several other conclusions can be drawn from Figs. 9a and 9b.

First, when the CTDA15 and AACP fields were included with

all radar fields (model 34RadSatLight), CSI and HSS scores

were substantially lower relative to model 32Radar yet were

much higher than when all 49 variables were used. This be-

havior indicates that some of the 13 radar fields shared by the

17GIRadSatLight and 34RadSatLight models do not correlate

well in space and time to severe warnings, which leads to in-

accurate decision tree-based predictions. Specifically, since

some of the important radar fields observe severe weather

below cloud top (e.g., area of HCA-classified hail at 3 km) tens

of minutes before satellite-derived fields (e.g., the AACP) can

infer severe weather, a classification method using both types

of fields together will not provide the best severe warning classi-

fication. Second, with respect toCSI, the 17GIRadSatLightmodel

with mixed predictor sets was significantly more skillful than

FIG. 7. Description of predictors used in the five random-forest predictor sets defined in Figs. 4 and 5. Shown are importance values

(unitless) as determined using GI, PFS, and SFS. Numbers next to each bar denote the importance ranking per column.
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models 9GIRadar, 12PFSRadar, 5SFSRadSat, yet not com-

pared to model 10PFSRadSat. For the models with the highest

CSI (17GIRadSatLight and 10PFSRadSat), model bias was

near 1.0 with random-forest probability thresholds of 48%. The

48% probability is the threshold used to convert the forecasts

from probabilistic to deterministic given that is was the prob-

ability that maximized CSI values across the vast majority of

the 500 random-forest models used to make Fig. 9. The yellow

plus sign and times sign denoted the highest CSI with the as-

sociated biases for models 17GIRadSatLight and 32Radar,

respectively, as shown in Fig. 10.

Figure 10 is a performance diagram that compares the two

models with the best CSI scores, 17GIRadSatLight (red line) and

32Radar (black line), with the 95% confidence intervals shaded

for each model, as developed using the 500 randomly selected

with replacement 0.75N (13832) datasets for both models. The

combined radar-satellite 17GIRadSatLight model’s mean CSI

peaks at 0.747 (with a bias of 0.94) as the mean POD increases to

0.72, which is higher than for model 32Radar (mean CSI of 0.636,

bias of 1.0, and mean POD of 0.66), consistent with Fig. 9a.

In summary, Figs. 8–10 show that GI predictor importance

resulted in a combination of 17 radar, lightning, and satellite

fields, which provided the best overall forecast skills. Use of 32

radar-only fields also shows high skill, yet there is quantifiable

added benefit of including satellite-based and lightning fields.

c. Predictor field time series analysis

Figures 11a–h present a time series analysis for eight select

storms from the 2004 cell track database, specifically for storms

in the testing database. The random-forest model used to

develop predictions in Fig. 11 was 17GIRadSatLight. In Fig. 11,

time series of only the top three most important radar fields are

shown (as listed in Fig. 4), along with model probabilities and

two satellite predictors (Figs. 4 and 6). The intent is to highlight

FIG. 8. Receiver operating characteristic (ROC) curves for three

random-forest models: 32Radar, 10PFSRadSat, and 17GIRadSatLight.

See Fig. 7 for the predictor sets. The 95% confidence interval per

ROC curve is shaded, and the area under the ROC curve (AUC)

for each model is shown. The 95% confidence interval was devel-

oped using 500 randomly selected datasets of size ‘‘0.75 3 testing

database’’ (13 832) for the three models. The 2.5%, 50%, and

97.5% confidence interval values of the AUC are listed per model.

FIG. 9. Box-and-whiskers plots showing (a) critical success index

and (b) Heidke skill score for all random-forest models using the

predictor selections as listed in Fig. 7. The data for these boxplot

curves were generated using 500 randomly selected datasets of size

‘‘0.753 testing database’’ (13 832) for all eight models. The middle

of the box is 50th percentile, edges of the box are 25th and

75th percentiles, the ends of whiskers are 2.5th and 97.5th per-

centiles, and dots are outliers (below 2.5th or above 97.5th). The

95% confidence interval therefore is between the 2.5th and 97.5th

percentile for each case.
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model performance relative to severe thunderstorm (black

circles) and tornado (upside-down triangles) warning periods.

A random-forest prediction value of 0.00 represents no diag-

nosed or predicted chance of severe weather, while a value of

1.00 represents a 100% chance for severe weather. Data in

Figs. 11a–h are shown every 1min, yet there are a few 1–3-min

periods of missing data.

Highlights of Fig. 11 include: (i) there is a general tendency

for the probabilities (ranging from 0 to 1) to increase prior to

times of severe warnings, and also to fall toward the end of or

after a severe warning period, (ii) there is a tendency for the

radar predictor variable magnitudes (HDRg20, HCAarea and

HDRcolMax as described in Fig. 11) to decrease toward the

ending of a warning, and (iii) both of the CTDA15 and AACP

fields are typically well-defined when storms are particularly

strong. Two of the more interesting time series analyses are in

Figs. 11d and 11f. In Fig. 11d, increases in the forecast proba-

bilities correlate to warning times, while the CTD maximizes

during and surrounding the time of a tornado warning. The

CTD trend is particularly pronounced in Fig. 11f, in which an

AACP was also present, yet as the tornado warning time

persists, the probability decreases along with magnitudes of all

predictor fields, suggesting that the tornado warning period

was too long or the model probabilities remained high for too

short of a time. Figure 11g showsmodel prediction values in the

;0.60–0.62 range for the span of time severe thunderstorm and

tornado warnings were in effect. Furthermore, Fig. 11h shows

that a 201-min ‘‘lead time’’ was given for this particular storm

prior to when the actual warning was issued.

Figure 12 shows the radar fields as commonly seen in dis-

plays in NWS Forecast Offices for the storm in Fig. 11h, along

with four important GOES-14 satellite and GridRad radar

predictors used in the 17GIRadSatLight model (Fig. 13). The

radar fields shown in Fig. 12 are ZH, radial velocity, ZDR, and

CC. Shown in Fig. 13 areGOES–14 visible imagery with CTD,

GOES-14 10.7-mm TB, GridRad HDR volume . 20 dB, and

GridRad 20-dBZ echo tops. Given the fields shown in Fig. 12, it

is apparent that hail exists within the high-reflectivity core, and

broad rotation was present, although this storm was unwarned

at the time (2050 UTC). In Fig. 13, this same storm (near

Amarillo, Texas) possessed the radar predictors for ordinarily

warned storms, and also attained forecast probabilities $90%

for large portions of the tracked period as shown in Fig. 11h,

from 2147 to 2208 UTC; that is, both satellite and GridRad

variables identified this as a severe weather–producing storm

prior to the warning issuance. This example storm highlights

the use of multiplatform predictors in concert with a machine-

learning system.

d. Along-cell-track random-forest model performance

Last, as a means of demonstrating how the random-forest

17GIRadSatLight model predictions perform along cell tracks

relative to 32Radar model results, Figs. 14a and 14b provide a

broad view of all cell tracks over the state of Kansas for the

testing database for all 7 days, in which the contingency-table

variables (Table 3) are shown as four different colors. The

0.48 threshold is used in Figs. 14a and 14b as this was the

probability where the CSI peaked for the 17GIRadSatLight

model, at 0.747. In Fig. 14a, the 32Radar model results are

presented, while Fig. 14b shows the 17GIRadSatLight model

results. The simple interpretation of Fig. 14 is that gray and

green tracks are successful correct predictions, while blue

and yellow are not. Red line segments in Fig. 14a are added

to show locations where the 17GIRadSatLight model im-

proved both the over and underpredictions of warning

conditions relative to the 32Radar model, and vice versa for

Fig. 14b where red lines show where model 32Radar showed

improvements over model 17GIRadSatLight. When com-

paring the figures, model 17GIRadSatLight improved on

32Radar for 407min of storm tracks (Fig. 14a), while model

32Radar improved on 17RadSatLight for 450min of storm

tracks (Fig. 14b), and thus the 32Radar model slightly out-

performed the 17GIRadSatLight model in this case example

centered over Kansas. Other notable differences between

Figs. 14a and 14b are that the 17GIRadSatLightmodel produced

a 7% increase in true positives (gray-colored lines), yet 45%

more false positives (blue lines), while the 32Radar model had

11% more correct true negatives (green lines) and 17% more

false negatives of severe weather (yellow lines). In Fig. 14a, the

HR is 64%, the FAR is 25%, and the POFD is 33%, while in

Fig. 14b theHR is 75%, the FAR is 17%, and the POFD is 45%.

5. Discussion and conclusions

The research goal here was to evaluate next-generation,

1-min-update-frequency geostationary satellite and lightning

information with ground-based radar to isolate which vari-

ables, when used in concert, provide skillful discriminatory

information in identifying severe versus nonsevere storms. To

address the first science question stated in the introduction, the

FIG. 10. Performance diagram that compares the success ratio

[12 false alarm ratio (FAR)] to the probability of detection (POD)

for two models. The corresponding 95% confidence intervals are

shaded as pink and gray, which were formed using 500 randomly

selected datasets of size ‘‘0.753 testing database’’ (13 832) for the

two models. Dashed lines show frequency bias. The yellow plus

sign and times sign represent the highest CSI and bias values for

models 17GIRadSatLight and 32Radar, respectively, as related

to Fig. 9a.
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FIG. 11. Time series for select storm-track times, showing the six main predictors used in the random-forest model, along with prob-

abilities, and severe storm (SvrWarn) and tornado (TornWarn) warning times, denoted by the black open circles and inverse filled

triangles, respectively. The main predictors arevolume ofHDR $20 dB (HDRg20), area of HCA-classified hail at 3 km (HCAarea),HDR

column maximum (HDRcolMax), above-anvil cirrus plume (AACP), and GOES mAMV area where CTD .15 3 1024 s21 (CTD). All

predictors are listed in Figs. 4 and 6. See the text for acronym definitions.
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peak skill when predicting severe weather likelihood (e.g.,

whether warning conditions are occurring) when only 5-min

storm-centered GridRad radar data are used was measured

as a mean CSI score of 0.64 and mean HSS of 0.477 for model

32Radar (see Figs. 9a,b). The answers to our second and third

study questions related to the value of satellite and lighting

data, and which satellite and lightning fields are most

beneficial, are that two models, one with 13 radar fields, 3

satellite fields, and 1 lightning field combined (model

17GIRadSatLight), and another with 8 radar and 2 satellite

fields (model 10PFSRadSat), showed better severe weather

diagnostic skill than models that used radar fields alone. Four

satellite-based fields were found to be the most important of an

initial 14 satellite fields using GI, SFS, and PFS importance

methods, when used in concert with radar and ENTLN light-

ning data. These satellite fields are the CTDA15, the AACP,

GOES mAMV CTV maximum, and GOES mAMV CTD

mean. Two other important satellite fields were the GOES

TB minimum–NARR tropopause temperature and GOES

maximum OT probability. The use of GOES-derived fields

adds 10%–30% predictive skill for severe convective storms,

given CSI, HSS, and AUC (Figs. 8–10), which is supported by

recent research.

Two additional points are worth noting: Although NWP

model data are used to identify areas where severe storms are

likely, no NWP-based fields were included in the analysis here.

For storms in close proximity, even if high-spatial resolution

convection-allowing NWP data were analyzed, a severe storm

adjacent to a nonsevere storm could be assigned the same

NWP fields in terms of kinematic and thermodynamic fields,

hence not adding much to our current understanding. Also,

given the use of 1-min-resolution satellite and lightning ob-

servations, it is recognized that the 1-min predictors for a given

storm are highly correlated in both space and time (i.e., tem-

poral autocorrelation as storm cell characteristics remain

nearly constant over 5–10-min intervals). Therefore, over short

segments of a storm cell’s track, across-predictor relationships

will likely be similar, which may have led to a degree of

FIG. 12. For a convective storm at 2050:46UTC 27May 2015 (Fig. 11h), theAmarillo, radar (a) reflectivity (dBZ)

with a white arrow highlighting the storm of interest, (b) radial velocity (m s21) with a circle highlighting the broad

and finescale rotation, (c) differential reflectivity (dB), and (d) correlation coefficient covering a splitting supercell

in north-central Texas. The black arrow highlights the location of a likely hail core. Radar plots were created using

the Python Atmospheric Radiation Measurement Radar Toolkit (Py-ART; Helmus and Collis 2016). Two con-

firmed hail reports did occur with this storm, one at 2224 UTC of 2.25-in. hail, and another at 2243 UTC of 1.75-

in. hail.

1740 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/03/21 05:50 PM UTC



overfitting and enhanced prediction accuracies. However, as

many storm cells over long lifetime periods were examined

in the training database, the confidence is high in our pre-

dictor field importance results given that model skills were

similar between the three best-performing models 32Radar,

10PFSRadSat and 17GIRadSatLight.

As noted above, in a number of cases, especially related to

the nonsevere convective storms tracked within the database,

several satellite-derived variables did not reach key thresholds

or did not occur within a given cell’s track, and hence the most

important fields CTDA15, AACP, andCTV are not always well

defined. Therefore, one key indicator of severe weather for a

forecaster can be when the most important satellite fields be-

come identifiable, or visible from the satellite in the absence of

overlying higher clouds, and hence usable within a machine-

learning approach. In general, most nonsevere storms never

produce an AACP, have tall OTs (Bedka et al. 2018), or pro-

duce unobscured CTV and CTD fields of high magnitudes

(Apke et al. 2018), as compared with their severe weather–

producing counterparts. Although this study focused on severe

weather warnings, a machine-learning approach could have

instead emphasized tornado-only events, which is another

option given the database used here (for that demonstration, see

Sandmæl et al. 2019). Last, there is no intent within this study to

suggest that a model such as random forests can consistently

outperform a well-trained human forecaster or human expert,

yet such a machine-learning approach can provide deterministic

or probabilistic guidance within the severe weather forecast

environment, much like the ProbSevere, RDT, COALITIONor

other models highlighted in the introduction.

The present study is limited especially by the seasonal and

geographic sampling of the cases composing the cell-track

FIG. 13. Random-forest predictor datasets for the north-central Texas storm that is shown in Fig. 12, with

(a) GOES-14 visible imagery with positive cloud-top divergence (CTD) contoured in red and negative CTD

contoured in blue dashes every 50 3 1025 s21, (b) GOES-14 10.7-mm TB (K), (c) GridRad-derived total hail dif-

ferential reflectivity (HDR) volume where HDR . 20 dB (m3), and (d) GridRad derived 20-dBZ echo tops (km).
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database. Specifically, only daytime severe weather days in the

month of May were considered, all within the central and

southern Great Plains and GOES–14 field of view (which has

since been replaced by GOES–16 and –17). Therefore, the

random-forest model developed here would be biased to pre-

dict severe weather from more organized convective storm

types, versus severe weather from pulse and quasi-linear con-

vective line convection, which more often occurs during the

summer months. A solution for future research would be to

form a much more expansive cell-track database, containing

GOES-16 and -17 satellite observed storms across the United

States for a longer period during the convective weather sea-

son. The enhanced spatial resolution of theGOES-16/-17 data

would lead to a more robust random-forest model as a result.

Also, performing this study using GLM lightning fields instead

of ENTLN data represents an area of future work, in addition

to using ENTLN or GLM lightning jump fields within the

machine-learning model.

The hope from the present study is that future research will

be focused toward making the key GOES-14 and GridRad

predictor fields into real-time day/night products based on use

ofGOES-16 and -17 data, and to improve the quality of current

FIG. 14. Track-based performance of the (a) 32Radar model and (b) model

17GIRadSatLight on the testing dataset in and near Kansas. The tracks are plotted in various

colors to signify whether a severe weather warning was in effect. The four colors represent the

contingency-table entries (Table 3). The 48% criterion was used since it maximized the CSI as

described in the text. In this figure, the red lines in (a) denote when model 17GISatRadLight

improved the forecast from model 32Radar and the red lines in (b) denote when model

32Radar improved the forecast from model 17GISatRadLight.
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probability-based nowcasting and diagnosis systems by using

different and new predictor fields. The supporting of applied

research that capitalizes on using observations from geosta-

tionary satellites with from 30-s to 2.5-min time resolution is a

recommendation, as a means of maximizing value from ex-

tensive, SRS real-time datasets, which are very often only

collected during severe weather episodes (e.g., Setvák and

Mu ̈ller 2013; Schmit et al. 2015; Setvák 2015). Another final

aspect of this study is that the GridRad radar and GOES-

derived fields are not yet available in real time, and hence new

research and applied work must occur to transition important

research-grade algorithms to run in an operational setting.
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APPENDIX A

Acronym List

AACP Above-anvil cirrus plume

CC Correlation coefficient

CTD Cloud-top divergence

CTDA15 Cloud-top divergence area . 15 3 10–4 s–1

CTV Cloud-top vorticity

GOES Geostationary Operational Environmental Satellite

ENTLN Earth Network Total Lightning Network

HCA Hail classification algorithm

HDR Hail differential reflectivity

KDP Specific differential phase

mAMV Mesoscale atmospheric motion vector

MESH Maximum expected size of hail

NARR North American Regional Reanalysis

NCEI National Centers for Environmental Information

OT Overshooting top

RF Random forest

SL3D Storm Labeling in Three Dimensions

SRS Super rapid scan

SWDI Severe Weather Data Inventory

VIL Vertically integrated liquid

ZH Horizontal reflectivity

ZDR Differential reflectivity

APPENDIX B

Definition of Skill Scores

The following skill scores are used in the study. The defini-

tions follow the contingency-table definitions in Table 3:

hit rate (HR)5
a1d

n
,

false positive rate5 probability of false detection (POFD)

5
b

b1 d
,

false alarm ratio (FAR)5
b

a1b
,

critical success index (CSI)5
a

a1 b1 c
,

Heidke skill score (HSS)5
2(ad2 bc)

(a1 c)(c1 d)1 (a1 b)(b1d)
,

Peirce skill score (PSS)5
ad2bc

(a1 c)(b1d)
, and

bias5
a1 b

a1 c
.
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